Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Food Res Int ; 184: 114251, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609229

RESUMEN

Persimmon (Diospyros kaki L. cv. Mopan.), an important commercial crop belonging to the genus of Diospyros in the Ebenaceae family, is rich in bioactive phenolic compounds. In this study, the phenolic compounds from fruits, leaves, and calyces of persimmon were qualitatively and quantitatively determined by UPLC-Q-Exactive-Orbitrap/MS and UPLC-QqQ-MS/MS, respectively. Furthermore, the role of phenolic extract from different parts of persimmon on neuroprotective activity in vitro, through against oxidative stress and anti-neuroinflammation effect was firstly evaluated. The results showed that 75 phenolic compounds, and 3 other kinds of compounds were identified, among which 44 of phenolic compounds were quantified from different parts of persimmon. It is the first time that epicatechin-epigallocatechin, catechin-epigallocatechin, catechin-epigallocatechin (A-type), and glycoside derivatives of laricitrin were identified in persimmon extract. The dominated phenolic compounds in three parts of persimmon were significantly different. All phenolic extracts from each part of persimmon showed strong neuroprotective activities against H2O2-induced oxidative stress in PC-12 cells and LPS-induced BV2 cells. The fruit extract presented the strongest activity, followed by calyx and leaf extract. The systematic knowledge on the phytochemical composition along with activity evaluation of different parts of persimmon could contribute to their targeted selection and development.


Asunto(s)
Catequina , Diospyros , Enfermedades Neurodegenerativas , Cromatografía Líquida de Alta Presión , Peróxido de Hidrógeno , Espectrometría de Masas en Tándem , Extractos Vegetales/farmacología
2.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612933

RESUMEN

Tannins, present in numerous plants, exhibit a binding affinity for proteins. In this study, we aimed to exploit this property to reduce the concentration of allergenic egg white proteins. Tannins were extracted, using hot water, from the lyophilized powder of underutilized resources, such as chestnut inner skin (CIS), young persimmon fruit (YPF), and bayberry leaves (BBLs). These extracts were then incorporated into an egg white solution (EWS) to generate an egg white gel (EWG). Allergen reduction efficacy was assessed using electrophoresis and ELISA. Our findings revealed a substantial reduction in allergenic proteins across all EWGs containing a 50% tannin extract. Notably, CIS and BBL exhibited exceptional efficacy in reducing low allergen levels. The addition of tannin extract resulted in an increase in the total polyphenol content of the EWG, with the order of effectiveness being CIS > YPF > BBL. Minimal color alteration was observed in the BBL-infused EWG compared to the other sources. Additionally, the introduction of tannin extract heightened the hardness stress, with BBL demonstrating the most significant effect, followed by CIS and YPF. In conclusion, incorporating tannin extract during EWG preparation was found to decrease the concentration of allergenic proteins while enhancing antioxidant properties and hardness stress, with BBL being particularly effective in preventing color changes in EWG.


Asunto(s)
Diospyros , Taninos , Alérgenos , Piel , Geles , Extractos Vegetales
3.
Molecules ; 29(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474645

RESUMEN

Fruit peels might be a valuable source of active ingredients for cosmetics, leading to more sustainable usage of plant by-products. The aim of the study was to evaluate the phytochemical content and selected biological properties of hydroglycolic extracts from peels and pulps of Annona cherimola, Diospyros kaki, Cydonia oblonga, and Fortunella margarita as potential cosmetic ingredients. Peel and pulp extracts were compared for their antiradical activity (using DPPH and ABTS radical scavenging assays), skin-lightening potential (tyrosinase inhibitory assay), sun protection factor (SPF), and cytotoxicity toward human fibroblast, keratinocyte, and melanoma cell lines. The total content of polyphenols and/or flavonoids was significantly higher in peel than in pulp extracts, and the composition of particular active compounds was also markedly different. The HPLC-MS fingerprinting revealed the presence of catechin, epicatechin and rutoside in the peel of D. kaki, whereas kaempferol glucoside and procyanidin A were present only in the pulp. In A. cherimola, catechin, epicatechin and rutoside were identified only in the peel of the fruit, whereas procyanidins were traced only in the pulp extracts. Quercetin and luteolinidin were found to be characteristic compounds of F. margarita peel extract. Naringenin and hesperidin were found only in the pulp of F. margarita. The most significant compositional variety between the peel and pulp extracts was observed for C. oblonga: Peel extracts contained a higher number of active components (e.g., vicenin-2, kaempferol rutinoside, or kaempferol galactoside) than pulp extract. The radical scavenging potential of peel extracts was higher than of the pulp extracts. D. kaki and F. margarita peel and pulp extracts inhibited mushroom and murine tyrosinases at comparable levels. The C. oblonga pulp extract was a more potent mushroom tyrosinase inhibitor than the peel extract. Peel extract of A. cherimola inhibited mushroom tyrosinase but activated the murine enzyme. F. margarita pulp and peel extracts showed the highest in vitro SPF. A. cherimola, D. kaki, and F. margarita extracts were not cytotoxic for fibroblasts and keratinocytes up to a concentration of 2% (v/v) and the peel extracts were cytotoxic for A375 melanoma cells. To summarize, peel extracts from all analyzed fruit showed comparable or better cosmetic-related properties than pulp extracts and might be considered multifunctional active ingredients of skin lightening, anti-aging, and protective cosmetics.


Asunto(s)
Annona , Catequina , Diospyros , Melanoma , Rosaceae , Rutaceae , Ratones , Animales , Humanos , Catequina/análisis , Antioxidantes/farmacología , Diospyros/química , Quempferoles/análisis , Monofenol Monooxigenasa , Pulgar , Frutas/química , Rosaceae/química , Rutina/análisis , Fitoquímicos/análisis , Extractos Vegetales/química
4.
Int J Biol Macromol ; 262(Pt 1): 130014, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340933

RESUMEN

The incorporation of ginger oil (GO) influenced the physical, optical, and structural properties of the chitosan (CH) film including the decreases of moisture content (60.15 %), water solubility (35.37 %) and water vapor permeability (WVP) (32.79 %) and the increases of tensile strength (TS) (125 %), elongation at break (EAB) (2.74 %) and opacity (131.08 %). Antifungal capacity of the CH film was enhanced when GO was added to the film. The CH + GO film showed a less homogeneous surface that the presence of the oil droplets on the film surface. Moreover, the CH and CH + GO coatings reduced weight loss of persimmon by 14.87 %, and 21.13 %, respectively, compared to the control. Moisture content loss of the coated CH- and the coated CH + GO- persimmons was decreased by 1.94 % and 4.92 %, respectively, compared to that of the control persimmon. Furthermore, the CH and CH + GO coatings decreased in color changes, respiration rate, ethylene production, changes in pH and TSS, and remained firmness of persimmon during storage at 25 °C. In addition, X-ray CT images can be used to monitor internal changes and observe the tissue breakdown during storage period. The ΔGS value can be used as a predictor of persimmon internal qualities. Thus, the CH film containing GO can be applied as an active packaging material.


Asunto(s)
Quitosano , Diospyros , Películas Comestibles , Aceites Volátiles , Zingiber officinale , Quitosano/química , Tomografía Computarizada por Rayos X , Permeabilidad , Embalaje de Alimentos
5.
Int J Biol Macromol ; 257(Pt 2): 128616, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070815

RESUMEN

Persimmon tannins, particularly in immature persimmons, haven't yet received corresponding attention to research on therapy of diabetes mellitus in spite of high hypoglycemic activity. To accurately screening key hypoglycemic components, immature persimmon extracts were isolated and identified using enzyme affinity ultrafiltration and HRLC-ESI-MS/MS. Among them, Hederagenin (IC50 = 0.077 ± 0.003 mg/mL), Ursolic acid (IC50 = 0.001 ± 0.000 mg/mL) and Quercetin dehydrate (IC50 = 0.081 ± 0.001 mg/mL) exhibited the strongest inhibitory effect on α-amylase (HSA and PPA) and α-glucosidase, respectively. And their inhibition mechanisms were analyzed using multi-spectral analysis, atomic force microscope and molecular docking, indicating the bonding with starch digestion enzymes through hydrogen bonding and hydrophobic interaction, and generating the enzyme aggregation. In vivo starch-tolerance experiment further verified that these inhibitors could improve postprandial hyperglycemia (17.18 % âˆ¼ 40.29 %), far more than acarbose. Suppressing, Hederagenin and Ursolic acid as triterpenoids appeared amazing potentiality to alleviate postprandial hyperglycemia, which suggested that IPE were comprehensive exploration values on prevention and treatment of hyperglycemia.


Asunto(s)
Diospyros , Hiperglucemia , Ácido Oleanólico/análogos & derivados , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Diospyros/química , alfa-Glucosidasas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Simulación del Acoplamiento Molecular , alfa-Amilasas , Espectrometría de Masas en Tándem , Almidón , Inhibidores de Glicósido Hidrolasas/farmacología
6.
J Food Sci ; 89(1): 294-305, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38010748

RESUMEN

This study aimed to investigate the ultrasound-assisted extraction of bioactive compounds from persimmon (Diospyros kaki) calyx by deep eutectic solvents (DES) with different molar ratios. For this reason, the prepared DES extracts' total phenolic-flavonoid compounds and antioxidant activities (1,1-diphenyl-2-picrilhydrazyl radical scavenging activity [DPPH•], Cupric Reducing Antioxidant Capacity (CUPRAC), and ferric reducing antioxidant power [FRAP]) were investigated as a result of the experimental design and optimization study conducted for this purpose. A sonication time of 20 min was determined as the optimal condition. Under these conditions, a molar ratio of 1.9:1 (lactic acid:choline chloride) and a water ratio of 70% provided the highest phenolic/flavonoid compounds and antioxidative activity. Correlations among water ratio, molar ratio, and sonication time were determined using principal component analysis (PCA). In conditions where total flavonoid compound, FRAP, and DPPH• are high due to PCA, it can be concluded that the sonication time is at high level; on the contrary, the water and molar ratios are at low level. In conclusion, ultrasound-assisted extraction using DES proved effective in persimmon calyx. Therefore, it can be recommended to use these environmentally friendly green solvents as an alternative to organic solvents in preparing extracts in various fields. PRACTICAL APPLICATION: This study shows the effectiveness of the ultrasound-assisted green extraction method using persimmon calyx specified as waste. These findings are compelling in the food industry in terms of consumers being now aware of green technology and the discovery that calyx is a good source of bioactive compounds.


Asunto(s)
Antioxidantes , Diospyros , Antioxidantes/química , Disolventes Eutécticos Profundos , Solventes/química , Flavonoides/química , Agua/química , Fenoles/química , Extractos Vegetales/química
7.
J Nat Med ; 78(2): 312-327, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38143256

RESUMEN

Our previous study demonstrated neuroprotective and therapeutic effects of a standardized flavonoid extract from leaves of Diospyros kaki L.f. (DK) on middle cerebral artery occlusion-and-reperfusion (MCAO/R)-induced brain injury and its underlying mechanisms. This study aimed to clarify flavonoid components responsible for the effects of DK using in vitro and in vivo transient brain ischemic models. Organotypic hippocampal slice cultures (OHSCs) subjected to oxygen- and glucose-deprivation (OGD) were performed to evaluate in vitro neuroprotective activity of DK extract and nine isolated flavonoid components. MCAO/R mice were employed to elucidate in vivo neuroprotective effects of the flavonoid component that exhibited the most potent neuroprotective effect in OHSCs. DK extract and seven flavonoids [quercetin, isoquercetin, hyperoside, quercetin-3-O-(2″-O-galloyl-ß-D-galactopyranoside), kaempferol, astragalin, and kaempferol-3-O-(2″-O-galloyl-ß-D-glucopyranoside) compound (9)] attenuated OGD-induced neuronal cell damage and compound (9) possessed the most potent neuroprotective activity in OHSCs. The MCAO/R mice showed cerebral infarction, massive weight loss, characteristic neurological symptoms, and deterioration of neuronal cells in the brain. Compound (9) and a reference drugs, edaravone, significantly attenuated these physical and neurological impairments. Compound (9) mitigated the blood-brain barrier dysfunction and the change of glutathione and malondialdehyde content in the MCAO mouse brain. Edaravone suppressed the oxidative stress but did not significantly affect the blood-brain barrier permeability. The present results indicated that compound (9) is a flavonoid constituent of DK with a potent neuroprotective activity against transient ischemia-induced brain damage and this action, at least in part, via preservation of blood-brain barrier integrity and suppression of oxidative stress caused by ischemic insult.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Diospyros , Fármacos Neuroprotectores , Daño por Reperfusión , Ratones , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Quercetina/farmacología , Quercetina/uso terapéutico , Edaravona/uso terapéutico , Quempferoles/farmacología , Quempferoles/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Infarto Cerebral/tratamiento farmacológico , Flavonoides/farmacología , Daño por Reperfusión/tratamiento farmacológico , Oxígeno , Lesiones Encefálicas/tratamiento farmacológico
8.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067488

RESUMEN

Diospyros mespiliformis Hochst. ex. A. DC is widely distributed throughout Africa and around the world. It is utilized ethnobotanically to treat fevers, wounds, malaria, diabetes mellitus, and other diseases. This review aims to provide an exhaustive overview of the traditional uses, pharmacology, and phytochemical analysis of D. mespiliformis, with the objective of identifying its therapeutic potential for further research. Scientific resources, including Google Scholar, Science Direct, Web of Science, Pub Med, and Scopus, were used to find pertinent data on D. mespiliformis. Secondary metabolites tentatively identified from this species were primarily terpenoids, naphthoquinones, phenolics, and coumarins. D. mespiliformis has been reported to demonstrate pharmacological activities, including antimicrobial, antiproliferative, antiparasitic, antioxidant, anti-inflammatory, antiviral, anti-hypersensitivity, and antidiabetic properties. The phytochemicals and extracts from D. mespiliformis have been reported to have some pharmacological effects in in vivo studies and were not toxic to the animal models that were utilized. The D. mespiliformis information reported in this review provides researchers with a comprehensive summary of the current research status of this medicinal plant and a guide for further investigation.


Asunto(s)
Antiinfecciosos , Diospyros , Ebenaceae , Plantas Medicinales , Animales , Diospyros/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/análisis , Etnofarmacología , Fitoterapia
9.
Trop Anim Health Prod ; 55(6): 360, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37851183

RESUMEN

Poultry is commonly infected by different bacteria and parasites in the environment, resulting in increased morbidity and mortality, but immunostimulants have been enhancing non-specific defense mechanisms conferring laying hens' protection. For this purpose, the pulp of yellow (Pouteria campechiana), white (Casimiroa edulis), and black (Diospyros digyna) sapotes were nanoencapsulated (YWB-SN) and evaluated in laying hens' peripheral blood leukocytes to test their addition to the experimental diets at a concentration of 0.5% (5g/kg of dry food) for 1 month (with two samples at days 15 and 30). The YWB-SN were safe when exposed to peripheral blood leukocytes (PBLs). The in vitro experiment showed that these nanocapsules enhanced reactive oxygen species production, and B-SN stimulated phagocytosis activity. Concerning the proinflammatory cytokine (TNF-α) transcription, this gene was upregulated after W-SN stimulation, while B-SN upregulated the IgG gene expression significantly. IgM was upregulated with any YBW-SN in PBLs after 24 h of stimulation. The in vivo study showed a notable B-SN immunostimulation in serum and an upregulation of TNF-α, IgM, and IgG mRNA transcription. Therefore, this study provides a new result of the yellow, white, and black sapote nanocapsules as a functional food for the poultry industry, highlighting the black sapote Diospyros digyna immunostimulant effect.


Asunto(s)
Casimiroa , Diospyros , Manilkara , Nanocápsulas , Pouteria , Animales , Femenino , Pollos/fisiología , Adyuvantes Inmunológicos/farmacología , Factor de Necrosis Tumoral alfa , Dieta/veterinaria , Aves de Corral , Suplementos Dietéticos , Inmunoglobulina G , Inmunoglobulina M , Alimentación Animal/análisis
10.
Sci Rep ; 13(1): 17202, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821538

RESUMEN

Recent research has focused on nanoparticles. Aedes albopictus is a potential vector that transmits fatal diseases. Recently, Phyto-reduced silver nanoparticles (AgNPs) were shown to be mosquito larvicides. This study aimed to synthesize silver nanoparticles using Diospyros montana leaf extract, characterize them, and test their efficacy as larvicide and pupicide against Ae. albopictus mosquitoes, determine their duration of effectiveness as a larvicide, identify plant compounds that help to synthesize nanoparticles, and assess their effects on non-target organisms. Quercetin, luteolin, kaempferol, gallocatechin gallate, epigallocatechin gallate, and capsaicin are among the novel reducing and capping agents found in D. montana leaf through LCMS analysis. The color shift and distinctive peak in UV-Vis spectroscopy made it simple to see how biogenic AgNPs were produced by converting Ag+ ions into Ag0. Substantial negative value (- 19.10 mv) of zeta potential demonstrated the long-term stability of AgNPs. A moderate range (8.72 - 50.75 nm) of particle size distribution pattern was obtained using the DLS technique. SEM and TEM images depicted the quasi-spherical (or polyhedral) and spherical shape of the nanoparticles, having approximately 16.75 nm average size. Synthesized AgNPs had a low LC90 value (< 10 ppm) for all larval instars and pupae of Ae. albopictus and had negligible mal effect on non-target organisms. Regression equations showed dose-dependent mortality by the positive correlation between mortality rate and AgNPs concentration, and each time the regression coefficient (R2) value was larger than zero. This study shows that D. montana leaf extract is an environment-friendly and sustainable source of an effective reducing and capping agent to synthesize highly stable, ecologically acceptable silver nanoparticles and their application as mosquitocide.


Asunto(s)
Aedes , Dengue , Diospyros , Insecticidas , Nanopartículas del Metal , Animales , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Montana , Extractos Vegetales/farmacología , Extractos Vegetales/química , Insecticidas/farmacología , Insecticidas/química , Mosquitos Vectores , Larva , Hojas de la Planta
11.
Skin Res Technol ; 29(9): e13448, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37753679

RESUMEN

BACKGROUND: Recent research suggests that persimmon leaf extract (PLE) has an effect on inflammatory skin diseases. Previously, PLE is revealed to inhibit not only nitric oxide production but also inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels in mouse macrophages in vitro. Moreover, it significantly reduced IL-6 production and 5α-reductase expression in human follicle dermal papilla cells (HFDPCs). This study aimed to determine whether the PLE-containing BLH308 complex improves hair growth in clinical trials. MATERIALS AND METHODS: A total of 88 participants were recruited, and were instructed to orally take BLH308 or the placebo twice a day for 24 weeks. The mean age of the test group was 38.52 ± 7.98 years and that of placebo group was 38.98 ± 8.80 years. The study was conducted for 24 weeks, and hair density, thickness, and gloss were evaluated. All participants completed a satisfaction survey questionnaire. RESULTS: The test group showed significantly increased hair density and hair diameter at week 24 compared with the placebo group (p = 0.0015 and p = 0.0001, respectively). Although not statistically significant, the degree of gloss also showed higher improvement in the test group compared to the placebo group. CONCLUSIONS: Our data demonstrated that oral consumption of the BLH308 complex containing PLE significantly increased hair density and thickness compared to the placebo group, showing its possible role in promoting hair growth.


Asunto(s)
Diospyros , Animales , Ratones , Humanos , Adulto , Persona de Mediana Edad , , Frutas , Método Doble Ciego , Cabello
12.
Trop Biomed ; 40(2): 152-159, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37650400

RESUMEN

Antibiotics which once a boon in medicine and saved millions of lives are now facing an ever-growing menace of antibacterial resistance, which desperately needs new antibacterial drugs which are innovative in chemistry and mode of action. For many years, the world has turned to natural plants with antibacterial properties to combat antibiotic resistance. On that basis, we aimed to identify plants with antibacterial and antibiotic potentiating properties. Seventeen different extracts of 3 plants namely Burkillanthus malaccensis, Diospyros hasseltii and Cleisthanthus bracteosus were tested against multi-drug resistant Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Methicillinresistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA). Antibacterial activity of hexane, methanol and chloroform extracts of bark, seed, fruit, flesh and leaves from these plants were tested using, disk diffusion assay, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Antibiotic potentiating capabilities were tested using time-kill assay. B. malaccensis fruit chloroform extract showed the biggest zone of inhibition against MRSA (13.00±0.0 mm) but C. bracteosus bark methanol extract showed the biggest inhibition zone against MSSA (15.33±0.6 mm). Interestingly, bark methanol extract of C. bracteosus was active against MRSA (8.7±0.6 mm), MSSA (7.7±0.6 mm) (Gram-positive) and A. baumannii (7.7±0.6 mm) (Gram-negative). Overall, the leaf methanol and bark methanol extract of C. bracteosus warrants further investigation such as compound isolation and mechanism of action for validating its therapeutic use as antibiotic potentiator importantly against MRSA and A. baumannii.


Asunto(s)
Antibacterianos , Bacterias , Extractos Vegetales , Humanos , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Cloroformo/farmacología , Diospyros/química , Metanol/farmacología , Extractos Vegetales/farmacología , Rutaceae/química , Phyllanthus/química
13.
Int J Biol Macromol ; 242(Pt 3): 125120, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37263329

RESUMEN

One distinguishing feature of the persimmon, that differentiates it from other fruits, is its high proanthocyanidins content, known as persimmon tannin (PT). Despite the poor absorption of PT in the small intestine, results from animal studies demonstrate that PT has many health benefits. Our goal in this review is to summarize the literature that elucidates the relationship between PT structure and activity. In addition, we also summarize the potential mechanisms underlying the health benefits that result from PT consumption; this includes the hypolipidemic, hypoglycemic, antioxidant, anti-inflammatory, antiradiation, antibacterial and antiviral, detoxification effects on snake venom, and the absorption of heavy metals and dyes. Studies show that PT is a structurally distinct proanthocyanidins that exhibits a high degree of polymerization. It is galloylation-rich and possesses unique A-type interflavan linkages in addition to the more common B-type interflavan bonds. Thus, PT is converted into oligomeric proanthocyanidins by depolymerization strategies, including the nucleophilic substitution reaction, acid hydrolysis, and hydrogenolysis. In addition, multiple health benefits exerted by PT mainly involve the inactivation of lipogenic and intracellular inflammatory signaling pathways, activation of the fatty acid oxidation signaling pathway, regulation of gut microbiota, and highly absorptive properties.


Asunto(s)
Diospyros , Proantocianidinas , Animales , Taninos/química , Extractos Vegetales/química , Proantocianidinas/farmacología , Proantocianidinas/química , Diospyros/química , Frutas/química
14.
Nutrients ; 15(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375680

RESUMEN

Activating brown adipose tissue (BAT) and stimulating white adipose tissue (WAT) browning is a prospective obesity treatment method. Dietary components derived from plants are the most effective approach to activate BAT and promote WAT browning in rodents. This study investigated the synergistic effects of Panax ginseng (PG) and Diospyros kaki leaf (DKL) extract on adipocyte differentiation and browning, as well as the molecular mechanism underlying their beneficial effects. The administration of PG and DKL to HFD-induced obese mice significantly decreased body weight and epididymal and abdominal adipose tissue mass. In in vitro, PG inhibited the adipogenesis of 3T3-L1 adipocytes by regulating the expression of key adipogenic regulators, such as peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)-α. In contrast, DKL negligibly influenced the adipogenesis of 3T3-L1 adipocytes but greatly increased the protein expression of UCP-1, PGC-1α, and PPARα in BAT and/or WAT. Moreover, PG and DKL inhibited adipogenesis synergistically and activated white adipocyte browning via AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) pathways. These results suggest that a combination of PG and DKL regulates adipogenesis in white adipocytes and browning in brown adipocytes by activating AMPK/SIRT1 axis. The potential use of PG and DKL may represent an important strategy in obesity management that will be safer and more effective.


Asunto(s)
Diospyros , Panax , Ratones , Animales , Adipocitos Blancos , Proteínas Quinasas Activadas por AMP/metabolismo , Panax/química , Sirtuina 1/metabolismo , Estudios Prospectivos , Adipogénesis , PPAR gamma/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Hojas de la Planta/metabolismo , Células 3T3-L1
15.
J Ethnopharmacol ; 314: 116525, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37149067

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Diospyros malabarica is an ethnomedicinal plant with hypoglycaemic, anti-bacterial, and anti-cancer properties and it belongs to the Ebenaceae family which is well known for its medicinal uses since ancient times and application of its bark and unripened fruit has been significantly mentioned in Ayurvedic texts. The Diospyros malabarica species which is known as the Gaub in Hindi and Indian Persimmon in English is native to India, however, it is distributed throughout the tropics. AIM OF THE STUDY: As Diospyros malabarica fruit preparation (DFP) possesses medicinal values, the study aims to evaluate its role as natural, non-toxic, and cost-effective dendritic cells (DCs) maturing immunomodulatory agent and also as an epigenetic regulator to combat Non-small cell lung cancer (NSCLC) which is a type of lung cancer whose treatment options such as chemotherapy, radiation therapy, etc. are accompanied with some adverse side effects. Thus, immunotherapeutic strategies are in high demand to evoke tumor protective immunity against NSCLC without causing such side effects. MATERIALS AND METHODS: Peripheral Mononuclear Cells (PBMCs) derived monocytes of normal subjects and NSCLC patients were utilized to generate DCs matured with either LPS (LPSDC) or DFP (DFPDC). Mixed Lymphocyte Reaction (MLR) was carried out with the differentially matured DCs co-culturing T cells and cytotoxicity of lung cancer cells (A549) was measured through LDH release assay and cytokine profiling was carried out via ELISA respectively. PBMCs of normal subjects and NSCLC patients have transfected separately in vitrowith CRISPR-activation plasmid of p53 and CRISPR-Cas9 knockout plasmid of c-Myc to analyze epigenetic mechanism(s) in the presence and absence of DFP. RESULTS: Diospyros malabarica fruit preparation (DFP) treated DC upregulates the secretion of T helper (TH)1 cell specific cytokines (IFN-γ and IL-12) and signal transducer and activator of transcription molecules (STAT1 and STAT4). Furthermore, it also downregulates the secretion of TH2-specific cytokines (IL-4 and IL-10). Diospyros malabarica fruit preparation (DFP) enhances p53 expression by reducing methylation levels at the CpG island of the promoter region. Upon c-Myc knockout, epigenetic markers such as H3K4Me3, p53, H3K14Ac, BRCA1, and WASp were enhanced whereas H3K27Me3, JMJD3, and NOTCH1 were downregulated. CONCLUSION: Diospyros malabarica fruit preparation (DFP) not only increases the expression of type 1 specific cytokines but also augments tumor suppression modulating various epigenetic markers to evoke tumor protective immunity without any toxic activities.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Diospyros , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Diospyros/metabolismo , Epigénesis Genética , Frutas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células Dendríticas , Citocinas/metabolismo , Inmunoterapia
16.
J Nat Med ; 77(3): 544-560, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37115470

RESUMEN

This study aimed to investigate the neuroprotective and therapeutic effects of Diospyros kaki L.f. leaves (DK) on transient focal cerebral ischemic injury and underlying mechanisms using a middle cerebral artery occlusion (MCAO) model of mice. The animals received the MCAO operation on day 0. The daily administrations of DK (50 and 100 mg/kg, p.o) and edaravone (6 mg/kg, i.v), a reference drug with radical scavenging activity, were started 7 days before (pre-treatment) or immediately after the MCAO operation (post-treatment) and continued during the experimental period. Histochemical, biochemical, and neurological changes and cognitive performance were evaluated. MCAO caused cerebral infarction and neuronal cell loss in the cortex, striatum, and hippocampus in a manner accompanied by spatial cognitive deficits. These neurological and cognitive impairments caused by MCAO were significantly attenuated by pre- and post-ischemic treatments with DK and edaravone, suggesting that DK, like edaravone, has therapeutic potential for cerebral ischemia-induced brain damage. DK and edaravone suppressed MCAO-induced changes in biomarkers for apoptosis (TUNEL-positive cell number and cleaved caspase-3 protein expression) and oxidative stress (glutathione and malondialdehyde contents) in the brain. Interestingly, DK, but not edaravone, mitigated an increase in blood-brain permeability and down-regulation of vascular endothelial growth factor protein expression caused by MCAO. Although the exact chemical constituents implicated in the effects of DK remain to be clarified, the present results indicate that DK exerts neuroprotective and therapeutic activity against transient focal cerebral ischemia-induced injury probably by suppressing oxidative stress, apoptotic process, and mechanisms impairing blood-brain barrier integrity in the brain.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Diospyros , Fármacos Neuroprotectores , Daño por Reperfusión , Ratones , Animales , Flavonoides/farmacología , Factor A de Crecimiento Endotelial Vascular , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/complicaciones , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/metabolismo , Apoptosis , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico
17.
Inflammopharmacology ; 30(6): 2211-2227, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36223063

RESUMEN

Rheumatoid arthritis is a chronic inflammatory disorder of polyarticular tissues, characterised by progressive synovitis. Its prolonged treatment imparts a huge burden on the healthcare system and results in toxicity, which necessitates the search for safe, efficacious and cost-effective therapies. Diospyros malabarica (Desr.) Kostel is traditionally used for anti-inflammatory purposes; however, to the best of our knowledge, there is no detailed study reporting the in vivo anti-inflammatory potential of this plant. Therefore, in the current study, the methanol extract of D. malabarica (Desr.) Kostel fruit (mDMF) was evaluated for its antioxidant, anti-inflammatory and anti-arthritic potentials, along with its underlying mechanisms. The antioxidant activity was evaluated by DPPH assay. Total phenolic and flavonoid contents were estimated via colorimetric and high-performance liquid chromatography (HPLC) methods. Different doses (250, 500 and 750 mg/kg) of mDMF were used to evaluate the anti-inflammatory and anti-arthritis actions in acute inflammatory (carrageenan and histamine-induced paw oedema) and Freund's complete adjuvant (FCA)-induced arthritis rat models. Levels of various pro- and anti-inflammatory biomarkers were estimated using ELISA and RT-PCR techniques. Paw samples were used for different histopathological and radiographic studies. Qualitative phytochemical and HPLC analyses indicated the presence of various polyphenolic compounds in mDMF, which exhibited marked antioxidant activity in the DPPH assay. mDMF showed time-dependent anti-inflammatory and anti-arthritic effects in in vivo models. ELISA assay data showed significant (p < 0.05) reduction in the serum levels of C-reactive protein and rheumatoid factor in the mDMF treatment groups. RT-PCR data showed significant (p < 0.05) down-regulation of various pro-inflammatory markers (TNF-α, NF-κB, COX-2, IL-1ß and IL-6) and up-regulation of anti-inflammatory markers (IκB, IL-4 and IL-10) in serum samples of rats treated with mDMF. The histopathology of the ankle joints showed reduced pannus formation, joint swelling and synovial hyperplasia in mDMF-treated animals when compared with the untreated disease control group. Overall, it may be concluded that the antioxidant, anti-inflammatory and anti-arthritis properties of mDMF are due to its flavonoid and phenolic constituents. Further studies using a stable oral dosage form of D. malabarica (Desr.) Kostel fruits extract are warranted to explore its effects in other inflammatory disorders, including irritable bowel syndrome, appendicitis and hepatitis.


Asunto(s)
Artritis Experimental , Diospyros , Ratas , Animales , Frutas , Diospyros/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Artritis Experimental/metabolismo , Extractos Vegetales/uso terapéutico , Citocinas/metabolismo , Ratas Sprague-Dawley , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Edema/metabolismo , Flavonoides/uso terapéutico , Biomarcadores/metabolismo
18.
J Food Sci ; 87(10): 4394-4415, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36112569

RESUMEN

Date plum (Diospyrus lotus L.) is an edible fruit from the Ebenaceae family, rich in nutrients, and having tremendous medicinal properties. This paper attempted to show the influence of different parameters of convective drying such as temperature (50, 60, 70, and 80°C) and air velocity (0.5, 1.0, and 1.5 m/s) on the shrinkage and microstructure, rehydration properties, antioxidant activity, and phenolic compounds of date plum. The drying caused significant changes in the color, actual size, and distribution of the fruit cells of date plum. The total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) of fresh date plum were 0.81 ± 0.00 mg GAE/g, 0.23 ± 0.10 mg ECE/g, 7.15 ± 1.09 mmol ISE/g, and 14.92 ± 0.88 mmol/TE, respectively. The drying at 70°C had the highest values of TPC, TFC, gallic acid, chlorogenic and syringic acids, catechin, quercetin-3-glucoside, resveratrol, and DPPH. The drying air velocities showed no significant effects on the antioxidant contents and the antioxidant activity. Of the models applied to the drying kinetics, the Midilli model was found as the best model to describe the drying kinetics of date plum. In addition, the Weibull model was found as the most successful among the models applied to the rehydration kinetics of date plum. According to the achieved findings, the convective drying temperature of 70°C is the optimum temperature to produce the dehydrated date plum. Practical Application This work has revealed the drying conditions responsible for preserving the phenolic compounds, total flavonoid content, and antioxidant features of D. lotus L. The study found the optimum drying conditions, and Midilli and Weibull models were the most fitted models to describe the drying and rehydration behaviors of D. lotus L. fruits, respectively. The drying provides a reasonable value of the possibility of continuous consumption of the fruits dried afforded on off-seasons. The dried fruits are widely used for multipurpose and have been extensively used in food industries due to their rich nutraceutical and antioxidant compounds.


Asunto(s)
Catequina , Diospyros , Prunus domestica , Antioxidantes/análisis , Frutas/química , Prunus domestica/química , Ácido Clorogénico/análisis , Resveratrol/análisis , Catequina/análisis , Extractos Vegetales/química , Fenoles/análisis , Flavonoides/análisis , Fluidoterapia
19.
J Food Biochem ; 46(12): e14413, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36136087

RESUMEN

Diospyros species (DS), "Ebenaceae," were known for their therapeutic uses in folk medicine since days of yore. Thereafter, scientific evidence related their health benefits to a myriad of chemical classes, for instance, naphthoquinones, flavonoids, tannins, coumarins, norbergenin derivatives, sterols, secoiridoids, sesquiterpenes, diterpenoids, triterpenoids, volatile organic compounds (VOCs), and carotenoids. The available literature showed that more than 200 compounds were isolated and identified via spectroscopic techniques. Many pharmacological activities of DS have been previously described, such as antioxidant, neuroprotective, antibacterial, antiviral, antiprotozoal, antifungal, antiinflammatory, analgesic, antipyretic and cosmeceutical, investigated, and confirmed through versatile in vitro and in vivo assays. Previous studies proved that genus Diospyros is a rich reservoir of valuable bioactive compounds. However, further comparative studies among its different species are recommended for more precise natural source-based drug discovery and clinical application. Accordingly, this review is to recall the chemical abundance and diversity among different members of genus Diospyros and their ethnopharmacological and pharmacological uses. PRACTICAL APPLICATIONS: Practically, providing sufficient background on both secondary metabolites divergence and pharmacological properties of genus Diospyros has many fruitful aspects. As demonstrated below, extracts and many isolated compounds have significant curative properties, which can lead to the discovery of pharmaceutically relevant alternative substitutes to conventional medicine. Consequently, molecular docking on various receptors can be applied. On the grounds, Naoxinqing tablets, a standardized herbal product containing D. kaki leaves extract, have been patented and recorded in Chinese Pharmacopeia as an approved Traditional Chinese Medicine (TCM) for the treatment of cerebro- and cardiovascular diseases, although the underlying mechanism remains under advisement. Moreover, the antimicrobial applications of DS are of considerable concern; since the widespread use of antibiotics resulted in different forms of bacterial resistance, hence, limiting and compromising effective treatment. In addition, as a result of contemporary rampant memory disorders, neuroprotective activities of different extracts of DS became of great emphasis.


Asunto(s)
Diospyros , Fitoterapia , Simulación del Acoplamiento Molecular , Fitoquímicos/química , Extractos Vegetales/química
20.
Nutrients ; 14(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36014755

RESUMEN

Metabolic syndrome has become a global health care problem since it is rapidly increasing worldwide. The search for alternative natural supplements may have potential benefits for obesity and diabetes patients. Diospyros kaki fruit extract and its oligosaccharides, including gentiobiose, melibiose, and raffinose, were examined for their anti-insulin resistance and obesity-preventing effect in zebrafish larvae. The results show that D. kaki oligosaccharides improved insulin resistance and high-fat-diet-induced obesity in zebrafish larvae, evidenced by enhanced ß-cell recovery, decreased abdominal size, and reduced the lipid accumulation. The mechanism of the oligosaccharides, molecular docking, and enzyme activities of PTP1B were investigated. Three of the oligosaccharides had a binding interaction with the catalytic active sites of PTP1B, but did not show inhibitory effects in an enzyme assay. The catalytic residues of PTP1B were typically conserved and the cellular penetration of the cell membrane was necessary for the inhibitors. The results of the mechanism of action study indicate that D. kaki fruit extract and its oligosaccharides affected gene expression changes in inflammation- (TNF-α, IL-6, and IL-1ß), lipogenesis- (SREBF1 and FASN), and lipid-lowering (CPT1A)-related genes. Therefore, D. kaki fruit extract and its oligosaccharides may have a great potential for applications in metabolic syndrome drug development and dietary supplements.


Asunto(s)
Diospyros , Síndrome Metabólico , Animales , Diospyros/química , Frutas/química , Lípidos/análisis , Síndrome Metabólico/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Obesidad , Oligosacáridos/análisis , Oligosacáridos/farmacología , Extractos Vegetales/análisis , Extractos Vegetales/farmacología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA